Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.544
Filtrar
1.
Talanta ; 275: 126144, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663062

RESUMEN

Here, 3D g-C3N4 with dense N vacancy in its 3D porous interconnected open-framework was synthesized, and the co-reactive 3-(dibutylamino)propylamine (DBAPA) was further covalently coupled onto the surface, resulting in a strong self-enhanced anodic electrochemiluminescence (ECL). Through introduction of high-density N vacancy, for the obtained 3D g-C3N4-NV, the band gap was broadened and the electrical conductivity was enhanced, realizing an obvious ECL improvement. Moreover, after the covalent binding of co-reactive DBAPA, the obtained 3D g-C3N4-NV-DBAPA exhibited a more intensive self-enhanced ECL signal due to the higher co-reaction efficiency originated from shorter electron transfer distance and lower energy loss. Based on the high initial signal of the proposed 3D g-C3N4-NV-DBAPA, a sensitive ECL biosensor with signal "on-off" was fabricated in assistance with multiple horizontal ordered hybridization chain reaction (HO-HCR). Through orderly fixing the reacted DNA chains on the Y-shape DNA structure on the electrode could effectively decrease diffusion process and improve the reaction efficiency of HCR process, resulting in the formation of numerous long horizontal double-strand DNA that could immobilize abundant ferrocene-doxorubicin (Fc-Dox) with ECL quenching effect. Meanwhile, compared to the traditional vertical HCR, the HO-HCR could make the quench reagent closer to the ECL emitter on the electrode surface and obtain a more effective quenching effect to enhance the sensing sensitivity. As a result, the proposed ECL biosensor archived the sensitive measurement of staphylococcus aureus with a detection limit of 10.3 aM.

2.
Cureus ; 16(3): e56243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38623107

RESUMEN

A 59-year-old man suffered from fever and chest pain for three days following an accidental bite to a lip ulcer. His lower lip showed swelling and tenderness, and chest computed tomography showed multiple bilateral nodules. He was diagnosed with septic pulmonary embolism and a lip abscess, and blood, sputum, and lip abscess cultures confirmed the presence of methicillin-resistant Staphylococcus aureus (MRSA). Despite the initiation of vancomycin, he rapidly developed respiratory failure and septic shock, necessitating intubation and noradrenaline support. Gentamicin was added on the seventh day of admission due to an insufficient effect, and vancomycin was switched to linezolid on the 14th day of admission. However, his respiratory failure persisted as bilateral pneumothorax developed. Blood culture was negative on the 14th day after admission, but the patient died on the 15th day after admission. The MRSA isolate was tested for the presence of the Panton-Valentine leukocidin (PVL) gene in conjunction with the USA300 strain. The prevalence of community-acquired (CA)-MRSA in the USA300 clone is increasing but still low in Japan, and this type of infection is commonly observed in people of all ages; this case is the first instance reported in Japan of a middle-aged patient with septic pulmonary embolism. Given the anticipated global increase in CA-MRSA infection caused by the USA300 clone and the emergence of USA300 with altered pathogenicity, it may be crucial to suspect PVL-positive CA-MRSA infections even in middle-aged or elderly patients presenting with septic pulmonary embolism as community infections.

3.
J Conserv Dent Endod ; 27(3): 252-256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38634035

RESUMEN

Objective: The objective of this study was to ascertain the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of royal jelly (RJ) against three microorganisms frequently linked with endodontic infections: Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Materials and Methods: Freshly harvested RJ was prepared at different concentrations (20%, 10%, 5%, 2.5%, and 1.25%) in distilled water. The microbial cultures of the target organisms were prepared. MIC was determined using a broth dilution technique, monitoring microbial growth. MBC was determined by inoculating agar plates with samples from tubes showing no apparent growth and evaluating the presence of bacterial or fungal growth following the incubation period. Results: For S. aureus, the MIC and MBC were 5 mg/ml of RJ. For E. faecalis, the MIC and MBC were 10 mg/ml of RJ. For C. albicans, both MIC and MBC were 10 mg/ml of RJ. The findings demonstrated RJ's potential to inhibit and eliminate these pathogenic microorganisms, making it a potential candidate for endodontic infection control. Conclusion: The antimicrobial properties of RJ against S. aureus, E. faecalis, and C. albicans present a promising avenue for enhancing infection control in endodontics. Additional investigations are needed to refine its use in clinical settings, especially in cases with mixed microbial infections.

4.
Emerg Microbes Infect ; 13(1): 2341972, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38597192

RESUMEN

Staphylococcus aureus (S. aureus) is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated S. aureus (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of S. aureus, however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of S. aureus, but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of S. aureus in the in vivo murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype S. aureus and represents a potential important target for future treatment and immune intervention against S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus/genética , Virulencia/genética , ARN Bacteriano/genética , Infecciones Estafilocócicas/epidemiología , Factores de Virulencia/genética , Staphylococcus aureus Resistente a Meticilina/genética
5.
Front Immunol ; 15: 1373367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633244

RESUMEN

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Conejos , Staphylococcus aureus , Países en Desarrollo , Antibacterianos , Vacunas Bacterianas , Toxoides
6.
Mikrochim Acta ; 191(5): 273, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635063

RESUMEN

Pathogenic bacteria, including drug-resistant variants such as methicillin-resistant Staphylococcus aureus (MRSA), can cause severe infections in the human body. Early detection of MRSA is essential for clinical diagnosis and proper treatment, considering the distinct therapeutic strategies for methicillin-sensitive S. aureus (MSSA) and MRSA infections. However, the similarities between MRSA and MSSA properties present a challenge in promptly and accurately distinguishing between them. This work introduces an approach to differentiate MRSA from MSSA utilizing matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in conjunction with a neural network-based classification model. Four distinct strains of S. aureus were utilized, comprising three MSSA strains and one MRSA strain. The classification accuracy of our model ranges from ~ 92 to ~ 97% for each strain. We used deep SHapley Additive exPlanations to reveal the unique feature peaks for each bacterial strain. Furthermore, Fe3O4 MNPs were used as affinity probes for sample enrichment to eliminate the overnight culture and reduce the time in sample preparation. The limit of detection of the MNP-based affinity approach toward S. aureus combined with our machine learning strategy was as low as ~ 8 × 103 CFU mL-1. The feasibility of using the current approach for the identification of S. aureus in juice samples was also demonstrated.


Asunto(s)
Nanopartículas de Magnetita , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Meticilina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Aprendizaje Automático
7.
Int J Pharm ; 657: 124146, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657716

RESUMEN

Host cell invasion with strong antibiotics evading is a major feature of respiratory Staphylococcus aureus infections with severe recurrence. Bacteriophage (phage) therapy and design of liposomal phage to target intracellular pathogens have been described recently. The practicality for pulmonary delivery of liposomal phage, and how formulation compositions affecting the aerosolization and intracellular bacterial killing remain unexplored. In the present study, three commonly used phospholipids (SPC, EPC, and HSPC) were selected to investigate their ability for phage K nebulization and intracellular therapy in the form of liposome-phage nanocomplexes. The three lipid nanocarriers showed protection on phage K upon mesh nebulization and the pulmonary deposition efficiency was influenced by the lipid used. Moreover, the intracellular bacterial killing was strongly depended on the lipid types, where EPC-phage exhibited the best killing performance with no relapsing. Phage K with the aid of EPC liposomes was also observed to manage the tissue infection in a 3D spheroid model more effectively than other groups. Altogether, this novel EPC liposome-phage nanocomplex can be a promising formulation approach that enables inhalable phage to manage respiratory infections caused by bacteria strongly associated with human epithelial cells.

8.
Front Pharmacol ; 15: 1356179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659581

RESUMEN

Introduction: The emergence of antibiotic resistance is a significant challenge in the treatment of bacterial infections, particularly in patients in the intensive care unit (ICU). Phage-antibiotic combination therapy is now being utilized as a preferred therapeutic option for infections that are multi-drug resistant in nature. Methods: In this study, we examined the combined impact of the staph phage vB_Sau_S90 and four antibiotics on methicillin-resistant Staphylococcus aureus (MRSA). We conducted experiments on three different treatment sequences: a) administering phages before antibiotics, b) administering phages and antibiotics simultaneously, and c) administering antibiotics before phages. Results: When the media was supplemented with sub-inhibitory concentrations of 0.25 µg/mL and 1 µg/mL, the size of the plaque increased from 0.5 ± 0.1 mm (in the control group with only the phage) to 4 ± 0.2 mm, 1.6 ± 0.1 mm, and 1.6 ± 0.4 mm when fosfomycin, ciprofloxacin, and oxacillin were added, respectively. The checkerboard analysis revealed a synergistic effect between the phages and antibiotics investigated, as indicated by a FIC value of less than 0.5. The combination treatment of phages and antibiotics demonstrated universal efficacy across all treatments. Nevertheless, the optimal effectiveness was demonstrated when the antibiotics were delivered subsequent to the phages. Utilizing the Galleria mellonella model, in vivo experiments showed that the combination of phage-oxacillin effectively eliminated biofilm-infected larvae, resulting in a survival rate of up to 80% in the treated groups. Discussion: Our findings highlight the advantages of using a combination of phage and antibiotic over using phages alone in the treatment of MRSA infections.

9.
Front Pharmacol ; 15: 1342821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659587

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major inducement of nosocomial infections and its biofilm formation render the high tolerance to conventional antibiotics, which highlights the requirement to develop new antimicrobial agents urgently. In this study, we identified a fluorinated benzimidazole derivative, TFBZ, with potent antibacterial efficacy toward planktonic MRSA (MIC = 4 µg/mL, MBC = 8 µg/mL) and its persistent biofilms (≥99%, MBEC = 8 µg/mL). TFBZ manifested significant irreversible time-dependent killing against MRSA as characterized by diminished cell viability, bacterial morphological change and protein leakage. Furthermore, the results from CBD devices, crystal violet assay in conjunction with live/dead staining and scanning electron microscopy confirmed that TFBZ was capable of eradicating preformed MRSA biofilms with high efficiency. Simultaneously, TFBZ reduced the bacterial invasiveness and exerted negligible hemolysis and cytotoxicity toward mammalian cells, which ensuring the robust therapeutic effect on mouse skin abscess model. The transcriptome profiling and quantitative RT-PCR revealed that a set of encoding genes associated with cell adhesion, biofilm formation, translation process, cell wall biosynthesis was consistently downregulated in MRSA biofilms upon exposure to TFBZ. In conclusion, TFBZ holds promise as a valuable candidate for therapeutic applications against MRSA chronic infections.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38662529

RESUMEN

INTRODUCTION: Atopic dermatitis (AD) is an inflammatory skin condition that affects millions of pediatric and adult patients with well-studied impact on morbidity and quality of life. Management occurs in a stepwise fashion beginning with preventative measures before immunomodulators are introduced. However, challenges remain in treatment of moderate to severe atopic dermatitis that is refractory to first and second-line treatments and there are only few topical anti-inflammatory options, especially for pediatric patients. AREAS COVERED: New medications are required to address these gaps as lesions may persist despite treatment or patients may discontinue treatment due to actual or anticipated adverse effects of mainstay medications. Emerging research into the pathophysiology of AD and the immune system at large has provided opportunities for novel interventions aimed at stopping AD mechanisms at new checkpoints. Clinical trials for 36 agents currently in phase 2 or phase 3 are evaluated with particular focus on the studies for, B244, CBP-201, Tapinarof, Lebrikizumab, Nemolizumab, Amlitelimab, and Rocatinlimab as they explore novel pathways and have some of the most promising results. EXPERT OPINION: These clinical trials contribute to the evolution of AD treatment toward greater precision based on salient pathways with a particular focus on moderate-to-severe AD to enhance efficacy and minimize adverse effects.

11.
Cureus ; 16(3): e56680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38646316

RESUMEN

Introduction Marine actinobacteria are promising sources of novel bioactive compounds due to their distinct ecological niches and diverse secondary metabolite production capabilities. Among these, Microbispora sp. T3S11 is notable for its unique spore chain structure, which allows for both morphological and genetic identification. Despite its potential, little is understood about the secondary metabolites produced by this strain. In this study, we hope to fill this gap by extracting and analyzing the antibacterial activities of secondary metabolites from Microbispora sp. T3S11, which will be the first time its bioactive compound profile is investigated. Aim To evaluate the antibacterial activity of secondary metabolites isolated from the marine actinobacterium Microbispora sp. T3S11. Materials and methods The antibacterial assays were carried out on agar plates containing the appropriate media for each pathogen. Sterile filter paper disks were impregnated with secondary metabolites extracted from Microbispora sp. T3S11 and placed on the surface of agar plates inoculated with the appropriate pathogens. Similarly, disks containing tetracycline were used as a positive control. The plates were then incubated at the appropriate temperature for each pathogen, and the zones of inhibition around the disks were measured to determine the extracted metabolites' antibacterial activity. Result Secondary metabolites had antimicrobial activity against Streptococcus mutans, Klebsiella pneumonia, and methicillin-resistant Staphylococcus aureus (MRSA). The inhibition of S. mutans was 7.5 mm and 8.5 mm at 75 µg/mL and 100 µg/mL, respectively. Klebsiella pneumonia zones measured 7 mm and 7.5 mm, while MRSA zones measured 7.6 mm and 8.5 mm at the same concentrations. Tetracycline, the standard antibiotic, had larger inhibition zones: 22 mm for S. mutans and Klebsiella pneumonia and 16 mm for MRSA, indicating variable susceptibility. Conclusion We conclude that the secondary metabolites extracted from Microbispora sp. T3S11 exhibits high antibacterial activity. This could be attributed to the presence of various active compounds.

12.
Front Immunol ; 15: 1255859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646524

RESUMEN

Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.


Asunto(s)
Linfoma Cutáneo de Células T , Ratones Endogámicos C57BL , Microbiota , Neoplasias Cutáneas , Piel , Animales , Microbiota/efectos de los fármacos , Ratones , Piel/microbiología , Piel/patología , Piel/inmunología , Piel/efectos de los fármacos , Neoplasias Cutáneas/microbiología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Linfoma Cutáneo de Células T/microbiología , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/terapia , Modelos Animales de Enfermedad , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Línea Celular Tumoral , Femenino , Humanos
13.
Sci Rep ; 14(1): 9183, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649676

RESUMEN

Staphylococci as a nosocomial infection agent, increases the possibility of contracting diseases such as wound infection, sepsis and skin infections in humans. It was shown that Staphylococcus aureus considered as a commensal organism causing various both endemic and epidemic hospital-acquired infections. Air samples were collected from Sina Hospital, Hamadan city, which dedicated to various respiratory diseases and analysed by biochemical tests. The resistance and sensitivity of bacterial strains to the cefoxitin antibiotic were also determined. Staphylococcus aureus density (CFU/m3) were measured in the air of various wards as follows: infectious 13.35 ± 7.57, poisoning 29.84 ± 33.43, emergency 8.64 ± 2.72, eye operation room 0, recovery room 6.28 ± 4.90, skin outpatient operation room 4.71 ± 2.36, respiratory isolation 0, ICU 0.79 ± 1.36, and the administrative room 6.28 ± 5.93; while the Staphylococcus epidermidis were as follows: infectious 1.57 ± 2.35, poisoning 2.35 ± 4.08, emergency 2.35 ± 2.35, eye operation room 0, recovery room 0.78 ± 1.36, skin outpatient operation room 2.35 ± 2.35, respiratory isolation 0, ICU 2.35 ± 4.08, and the administrative room 1.57 ± 1.36. The positive and negative control samples showed a concentration of 0. Moreover, among the S. aureus isolates, 33.3% were found to be resistant to cefoxitin, while 40.6% showed to be sensitive. Based on the results, the number of active people and the type and quality of ventilation are very effective in the air quality of various wards of hospital. The poisoning section showed the most contaminated air and the highest resistance and sensitivity to the cefoxitin antibiotic.

14.
Front Microbiol ; 15: 1376620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650877

RESUMEN

Staphylococcus species are the primary cause of mastitis in dairy cows across the world. Staphylococcus aureus has recently become a pathogen that is zoonotic and multidrug resistant. This study aimed to sequence whole genomes of 38 S. aureus isolates from 55 subclinical mastitis dairy cows of 7 small-scale farmers in the Free State Province, South Africa and document and their antimicrobial and virulence genes. The 38 isolates were grouped by the in silico multi-locus sequencing types (MLST) into seven sequence types (STs), that is (ST 97, 352, 152, 243) and three new STs (ST8495, ST8500, and ST8501). Thirty-three S. aureus isolates were divided into 7 core single-nucleotide polymorphism (SNP) clusters. Among the 9 distinct spa-types that were detected, Spa-types t2883 accounted for the majority of isolates at 12 (31.57%), followed by t416 with 11 (28.94%) and t2844 with 5 (13.15%). The data also revealed the identification of four (4) plasmids, with Rep_N (rep20) accounting for the majority of isolates with 17 (44.73%), followed by Inc18 (repUS5) with 2 (5.26%). These isolates included 11 distinct antimicrobial resistance genes and 23 genes linked to bacterial virulence. Surprisingly, no methicillin resistance associated genes were detected in these isolates. Genome data of the current study will contribute to understanding epidemiology S. aureus genotypes and ultimately aid in developing treatment and control plans to stop the spread of mastitis in the Free State province and South Africa as a whole.

15.
Front Microbiol ; 15: 1376669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650875

RESUMEN

Introduction: The emergence of multi-drug-resistant bacteria is one of the main concerns in the health sector worldwide. The conventional strategies for treatment and prophylaxis against microbial infections include the use of antibiotics. However, these drugs are failing due to the increasing antimicrobial resistance. The unavailability of effective antibiotics highlights the need to discover effective alternatives to combat bacterial infections. One option is the use of metallic nanoparticles, which are toxic to some microorganisms due to their nanometric size. Methods: In this study we (1) synthesize and characterize bismuth and silver nanoparticles, (2) evaluate the antibacterial activity of NPs against Staphylococcus aureus and Escherichia coli in several infection models (in vivo models: infected wound and sepsis and in vitro model: mastitis), and we (3) determine the cytotoxic effect on several cell lines representative of the skin tissue. Results and discussion: We obtained bimetallic nanoparticles of bismuth and silver in a stable aqueous solution from a single reaction by chemical synthesis. These nanoparticles show antibacterial activity on S. aureus and E. coli in vitro without cytotoxic effects on fibroblast, endothelial vascular, and mammary epithelium cell lines. In an infected-wound mice model, antibacterial effect was observed, without effect on in vitro mastitis and sepsis models.

16.
Saudi Pharm J ; 32(6): 102063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650911

RESUMEN

Purpose: Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity. Methods: According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation. Results: Characterization studies showed emulsion homogeneity and stability (%T 95.40-99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm-115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug. Conclusion: These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.

17.
Microlife ; 5: uqae007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651166

RESUMEN

Bacteria synchronize the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of 18 NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems, and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.

18.
Antibiotics (Basel) ; 13(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38666973

RESUMEN

The escalating prevalence of antibiotic-resistant bacteria poses a grave threat to human health, necessitating the exploration of novel alternatives to conventional antibiotics. This study investigated the impact of extracts derived from the supernatant of four lactic acid bacteria strains on factors contributing to the pathogenicity of three Staphylococcus aureus strains. The study evaluated the influence of lactic acid bacteria supernatant extracts on the growth, biofilm biomass formation, biofilm metabolic activity, and biofilm integrity of the S. aureus strains. Additionally, the impact on virulence factors (hemolysin and coagulase) was examined. Gas chromatography coupled with mass spectrometry was used to identify the bioactive compounds in the extracts, while molecular docking analyses explored potential interactions. Predominantly, the extracts contain eight 2,5-diketopiperazines, which are cyclic forms of peptides. The extracts demonstrated inhibitory effects on biofilm formation, the ability to disrupt mature biofilms, and reduce the biofilm cell metabolic activity of the S. aureus strains. Furthermore, they exhibited the ability to inhibit α-hemolysin production and reduce coagulase activity. An in silico docking analysis reveals promising interactions between 2,5-diketopiperazines and key proteins (SarA and AgrA) in S. aureus, confirming their antivirulence and antibiofilm activities. These findings suggest that 2,5-diketopiperazines could serve as a promising lead compound in the fight against antibiotic-resistant S. aureus.

19.
Antibiotics (Basel) ; 13(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666974

RESUMEN

Vancomycin is the cornerstone in treating methicillin-resistant Staphylococcus aureus (MRSA) infections. However, therapeutic failures can occur when MRSA strains with decreased susceptibility to glycopeptides (DSG) are involved. The aim of this study was to detect and characterize DSG in MRSA recovered from children with invasive diseases at a reference pediatric hospital between 2009 and 2019. Fifty-two MRSA strains were screened using agar plates with vancomycin 3 and 4 mg/L (BHI-3 and BHI-4); the VITEK2 system; and standard and macro E-tests. Suspicious hVISA were studied by population analysis profiling-area under the curve (PAP-AUC), and wall thickness was analyzed by transmission electron microscopy. Neither VRSA nor VISA were detected in this set. As only three strains met the hVISA criteria, the PAP-AUC study included 12 additional MRSA strains that grew one colony on BHI-4 plates or showed minimum inhibitory concentrations of vancomycin and/or teicoplanin ≥ 1.5 mg/L. One strain was confirmed as hVISA by PAP-AUC. The wall thickness was greater than the vancomycin-susceptible control strain; it belonged to ST30 and carried SCCmec IV. As expected, a low frequency of hVISA was found (1.9%). The only hVISA confirmed by PAP-AUC was not detected by the screening methods, highlighting the challenge that its detection represents for microbiology laboratories.

20.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666992

RESUMEN

Could rebound explain the paradoxical lack of prevention effect against Staphylococcus aureus blood stream infections (BSIs) with antibiotic-based decontamination intervention (BDI) methods among studies of ICU patients within the literature? Two meta-regression models were applied, each versus the group mean length of stay (LOS). Firstly, the prevention effects against S. aureus BSI [and S. aureus VAP] among 136 studies of antibiotic-BDI versus other interventions were analyzed. Secondly, the S. aureus BSI [and S. aureus VAP] incidence in 268 control and intervention cohorts from studies of antibiotic-BDI versus that among 165 observational cohorts as a benchmark was modelled. In model one, the meta-regression line versus group mean LOS crossed the null, with the antibiotic-BDI prevention effect against S. aureus BSI at mean LOS day 7 (OR 0.45; 0.30 to 0.68) inverted at mean LOS day 20 (OR 1.7; 1.1 to 2.6). In model two, the meta-regression line versus group mean LOS crossed the benchmark line, and the predicted S. aureus BSI incidence for antibiotic-BDI groups was 0.47; 0.09-0.84 percentage points below versus 3.0; 0.12-5.9 above the benchmark in studies with 7 versus 20 days mean LOS, respectively. Rebound within the intervention groups attenuated and inverted the prevention effect of antibiotic-BDI against S. aureus VAP and BSI, respectively. This explains the paradoxical findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...